Un análisis bibliométrico sobre el uso y la adopción de la educación en línea en la enseñanza superior

Autores/as

  • Martin Ortega Azurduy

Palabras clave:

Educación Superior, Modelos de Ecuaciones Estructurales, Educación en Línea, Análisis Bibliométrico

Resumen

Este análisis bibliométrico identifica y presenta los artículos que han dado forma a las tendencias actuales en la investigación de la adopción y el uso del e-learning en la educación superior utilizando modelos de ecuaciones estructurales. Los metadatos para este trabajo académico se obtuvieron de la base de datos The Lens, y la visualización de redes se produjo con VOSviewer. Un total de 414 artículos publicados entre 2006 y 2021 se incluyen en este estudio. Los resultados de este estudio incluyen: cuatro grupos temáticos, una lista de los 10 artículos más citados, una nube de palabras para áreas de estudio, dos mapas de visualización de redes (citas y palabras clave). Siendo el primer trabajo bibliométrico que aborda específicamente artículos que usan técnicas de modelos de ecuaciones estructurales, la principal contribución de este trabajo es sintetizar cuantitativamente la gran cantidad de metadatos bibliométricos obtenidos y presentar el estado, la estructura y las tendencias en el estudio de la adopción y el uso del e-learning en la educación superior. Específicamente, este trabajo introducirá los trabajos y autores más influyentes, temas centrales, y áreas de investigación actual y futura. En conclusión, este trabajo debe servir como un recurso para futuras investigaciones, así como, para ser un ejemplo sobre cómo llevar a cabo un análisis bibliométrico básico.

Biografía del autor/a

Martin Ortega Azurduy

Lecturer in Management and Research Methods

Citas

Abu-Al-Aish, A., & Love, S. (2013). Factors influencing students’ acceptance of m-learning: An investigation in higher education. International Review of Research in Open and Distance Learning, 14(5), 82–107. https://doi.org/10.19173/irrodl.v14i5.1631

Akour, I., Alshurideh, M., Al Kurdi, B., Al Ali, A., & Salloum, S. (2021). Using machine learning algorithms to predict people’s intention to use mobile learning platforms during the COVID-19 pandemic: Machine learning approach. JMIR Medical Education, 7(1). https://doi.org/10.2196/24032

Arbaugh, J. B., & Hwang, A. (2006). Does “teaching presence” exist in online MBA courses? Internet and Higher Education, 9(1), 9–21. https://doi.org/10.1016/j.iheduc.2005.12.001

Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., & García-Peñalvo, F. J. (2017). Learning with mobile technologies – Students’ behavior. Computers in Human Behavior, 72, 612–620. https://doi.org/10.1016/j.chb.2016.05.027

Cheon, J., Lee, S., Crooks, S. M., & Song, J. (2012). An investigation of mobile learning readiness in higher education based on the theory of planned behavior. Computers and Education, 59(3), 1054–1064. https://doi.org/10.1016/j.compedu.2012.04.015

Cicha, K., Rizun, M., Rutecka, P., & Strzelecki, A. (2021). Covid-19 and higher education: First-year students’ expectations toward distance learning. Sustainability (Switzerland), 13(4), 1–20. https://doi.org/10.3390/su13041889

Cidral, W. A., Oliveira, T., Di Felice, M., & Aparicio, M. (2018). E-learning success determinants: Brazilian empirical study. Computers and Education, 122, 273–290. https://doi.org/10.1016/j.compedu.2017.12.001

Clarivate. (2021). Web of Science platform: Web of Science: Summary of Coverage. https://clarivate.libguides.com/webofscienceplatform/coverage.

Eom, S. B., Wen, H. J., & Ashill, N. (2006). The Determinants of Students’ Perceived Learning Outcomes and Satisfaction in University Online Education: An Empirical Investigation. Decision

Sciences Journal of Innovative Education, 4(2), 215–235. https://doi.org/10.1111/j.1540-4609.2006.00114.x

Gaeta, M. L., Gaeta, L., & Rodriguez, M. del S. (2021). The Impact of COVID-19 Home Confinement on Mexican University Students: Emotions, Coping Strategies, and Self-Regulated Learning. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.642823

Han, J., Kang, H.-J., Kim, M., & Kwon, G. H. (2020). Mapping the intelectual structure of research on surgery with mixed reality: Bibliometric network analysis (2000–2019). Journal of Biomedical Informatics, 109. https://doi.org/10.1016/j.jbi.2020.103516

Hoyle, R. H. (Ed.). (1995). Structural Equation Modeling: Concepts, Issues and Applications. SAGE Publications.

Huang, J. H., Lin, Y. R., & Chuang, S. T. (2007). Elucidating user behavior of mobile learning: A perspective of the extended technology acceptance model. Electronic Library, 25(5), 585–598. https://doi.org/10.1108/02640470710829569

Joo, Y. J., Lim, K. Y., & Kim, E. K. (2011). Online university students’ satisfaction and persistence: Examining perceived level of presence, usefulness and ease of use as predictors in a structural model. Computers and Education, 57(2), 1654–1664. https://doi.org/10.1016/j.compedu.2011.02.008

Kassab, S. E., Al-Shafei, A. I., Salem, A. H., & Otoom, S. (2015). Relationships between the quality of blended learning experience, self-regulated learning, and academic achievement of medical students: A path analysis. Advances in Medical Education and Practice, 6, 27–34. https://doi.org/10.2147/AMEP. S75830

Kim, S., Rosenblith, S., Chang, Y., & Pollack, S. (2020). Will ICMT access and use support URM students’ online learning in the (Post) covid-19 era? Sustainability (Switzerland), 12(20), 1–14. https://doi.org/10.3390/su12208433

Larsen, T. J., Sørebø, A. M., & Sørebø, Ø. (2009). The role of task-technology fit as users’ motivation to continue information system use. Computers in Human Behavior, 25(3), 778–784. https://doi.org/10.1016/j.chb.2009.02.006

Lens.org. (2021). About The Lens. https://about.lens.org/.

Mohammadi, H. (2015). Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior, 45, 359–374. https://doi.org/10.1016/j.chb.2014.07.044

Padilla-Meléndez, A., Del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers and Education, 63, 306–317. https://doi.org/10.1016/j.compedu.2012.12.014

Park, S. Y. (2009). An analysis of the technology acceptance model in understanding University students’ behavioral intention to use e-Learning. Educational Technology and Society, 12(3), 150–162.

Park, S. Y., Nam, M. W., & Cha, S. B. (2012). University students’ behavioral intention to use mobile learning: Evaluating the technology acceptance model. British Journal of Educational Technology, 43(4), 592–605. https://doi.org/10.1111/j.1467-8535.2011.01229.x

Pituch, K. A., & Lee, Y. K. (2006). The influence of system characteristics on e-learning use. Computers and Education, 47(2), 222–244. https://doi.org/10.1016/j.compedu.2004.10.007

Ramírez-Correa, P. E., Arenas-Gaitán, J., & Rondán-Cataluña, F. J. (2015). Gender and Acceptance of E-Learning: A Multi-Group Analysis Based on a Structural Equation Model among College Students in Chile and Spain. PLOS ONE, 10(10), e0140460. https://doi.org/10.1371/journal.pone.0140460

Rizun, M., & Strzelecki, A. (2020). Students’ acceptance of the covid-19 impact on shifting higher education to distance learning in Poland. International Journal of Environmental Research and

Public Health, 17(18), 1–19. https://doi.org/10.3390/ijerph17186468

Sahin, I., & Shelley, M. (2008). Considering students’ perceptions: The distance education student satisfaction model. Educational Technology and Society,11(3), 216–223.

Shahzad, A., Hassan, R., Aremu, A. Y., Hussain, A., & Lodhi, R. N. (2021). Effects of COVID-19 in E-learning on higher education institution students: the group comparison between male and female. Quality and Quantity, 55(3), 805–826. https://doi.org/10.1007/s11135-020-01028-z

Sukendro, S., Habibi, A., Khaeruddin, K., Indrayana, B., Syahruddin, S., Makadada, F. A., & Hakim, H. (2020). Using an extended Technology Acceptance Model to understand students’ use of e-learning during Covid-19: Indonesian sport science education context. Heliyon, 6(11). https://doi.org/10.1016/j.heliyon.2020.e05410

Thurasamy, R., & Lee, J. (2012). System Characteristics, Satisfaction and E-Learning Usage: A Structural Equation Model (SEM). Turkish Online Journal of Educational Technology, 11(2), 196–206.

Tiyar, F. R., & Khoshsima, H. (2015). Understanding students’ satisfaction and continuance intention of e-learning: Application of expectation–confirmation model. World Journal on Educational Technology: Current Issues, 7(3), 157–166. https://doi.org/10.18844/wjet.v7i3.203

UNESCO. (2021). COVID-19: reopening and reimagining universities, survey on higher education through the UNESCO National Commissions. https://unesdoc.unesco.org/ark:/48223/pf0000378174

van Eck, N. J., & Waltman, L. (2021). Manual for VOSviewer version 1 .6.17. Leiden University.

Descargas

Publicado

01-09-2021

Número

Sección

Artículos